Простейшие тригонометрические уравнения

Мы приступаем к изучению тригонометрических уравнений — центральной темы всего тригонометрического раздела.

Пусть a — некоторое число. **Простейшие тригонометрические уравнения** — это уравнения следующих видов:

$$\cos x = a$$
, $\sin x = a$, $\operatorname{tg} x = a$, $\operatorname{ctg} x = a$.

Решить простейшее тригонометрическое уравнение — это значит описать множество значений переменной x, для которых данная тригонометрическая функция принимает заданное значение a.

Решение любого тригонометрического уравнения сводится, как правило, к решению одного или нескольких простейших тригонометрических уравнений.

Простейшие тригонометрические уравнения мы будем решать с помощью тригонометрической окружности.

Уравнение $\cos x = a$

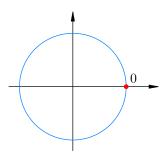
Напомним, что по определению $\cos x$ — это абсцисса точки x тригонометрической окружности, которая отвечает углу x. Этого достаточно для рассмотрения уравнения $\cos x = a$.

Если a>1 или a<-1, то уравнение $\cos x=a$ не имеет решений. В самом деле, косинус не может принимать значений, по модулю превосходящих единицу.

Если же $|a| \leqslant 1$, то уравнение $\cos x = a$ имеет решения, причём решений будет бесконечно много (вспомните предыдущую статью «Обратные тригонометрические функции»: прямая y = a пересекает график функции $y = \cos x$ в бесконечном множестве точек). Сейчас мы научимся описывать все эти решения.

1.
$$\cos x = 1$$
.

Нас интересуют точки тригонометрической окружности, которые имеют абсциссу 1. Легко видеть, что имеется лишь одна такая точка:



Эта точка соответствует бесконечному множеству углов: $0, 2\pi, -2\pi, 4\pi, -4\pi, 6\pi, -6\pi, \dots$ Все перечисленные углы получаются из нулевого угла прибавлением целого числа полных углов 2π (то есть нескольких полных оборотов как в одну, так и в другую сторону).

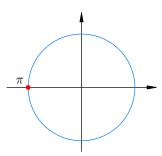
Следовательно, все эти углы могут быть записаны одной формулой:

$$x = 2\pi n, n \in \mathbb{Z}.$$

Это и есть множество решений уравнения $\cos x = 1$.

2. $\cos x = -1$.

На тригонометрической окружности имеется лишь одна точка с абсциссой -1:



Эта точка соответствует углу π и всем углам, отличающихся от π на несколько полных оборотов в обе стороны, то есть на целое число полных углов. Следовательно, все решения уравнения $\cos x = -1$ записываются формулой:

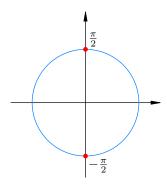
$$x = \pi + 2\pi n, n \in \mathbb{Z}.$$

Заодно вспоминаем первое правило, сформулированное нами в статье «Тригонометрическая окружность»:

• для описания множества углов, отвечающих одной точке тригонометрической окружности, нужно взять какой-либо один угол из этого множества и прибавить $2\pi n$.

3. $\cos x = 0$.

Отмечаем на тригонометрической окружности точки с нулевой абсциссой. Их две:



Эти точки образуют диаметральную пару (то есть служат концами диаметра тригонометрической окружности). Все углы, отвечающие точкам диаметральной пары, отличаются друг от друга на целое число углов π (то есть на целое число полуоборотов как в одну, так и в другую сторону).

Соответственно, вспоминаем второе правило из статьи «Тригонометрическая окружность»:

• для описания множества углов, отвечающих диаметральной паре точек тригонометрической окружности, нужно взять один угол из этого множества и прибавить πn .

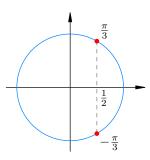
Следовательно, все решения уравнения $\cos x = 0$ описываются формулой:

$$x = \frac{\pi}{2} + \pi n, \, n \in \mathbb{Z}.$$

2

4. $\cos x = \frac{1}{2}$.

Имеем вертикальную пару точек с абсциссой 1/2:



Все углы, соответствующие верхней точке, описываются формулой:

$$x_1 = \frac{\pi}{3} + 2\pi n, \ n \in \mathbb{Z}.$$

Все углы, соответствующие нижней точке, описываются формулой:

$$x_2 = -\frac{\pi}{3} + 2\pi n, \ n \in \mathbb{Z}.$$

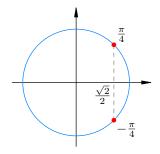
Обе серии решений можно описать одной формулой:

$$x = \pm \frac{\pi}{3} + 2\pi n, \, n \in \mathbb{Z}.$$

Именно так мы и записываем решения уравнения $\cos x = \frac{1}{2}$.

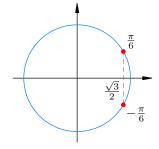
Нижеследующие уравнения решаются совершенно аналогично. Для каждого уравнения мы приводим лишь рисунок и ответ.

5.
$$\cos x = \frac{\sqrt{2}}{2}$$
.



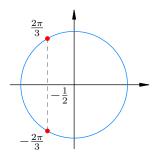
$$x = \pm \frac{\pi}{4} + 2\pi n, \, n \in \mathbb{Z}.$$

6.
$$\cos x = \frac{\sqrt{3}}{2}$$
.



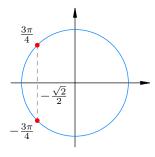
$$x = \pm \frac{\pi}{6} + 2\pi n, \, n \in \mathbb{Z}.$$

7.
$$\cos x = -\frac{1}{2}$$
.



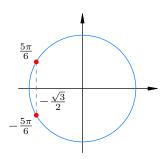
$$x = \pm \frac{2\pi}{3} + 2\pi n, \ n \in \mathbb{Z}.$$

8.
$$\cos x = -\frac{\sqrt{2}}{2}$$
.



$$x = \pm \frac{3\pi}{4} + 2\pi n, \ n \in \mathbb{Z}.$$

9.
$$\cos x = -\frac{\sqrt{3}}{2}$$
.

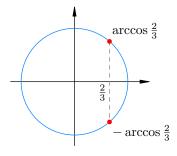


$$x = \pm \frac{5\pi}{6} + 2\pi n, \, n \in \mathbb{Z}.$$

До сих пор мы рассматривали уравнения, в правой части которых стояли табличные значения косинуса (а именно, $0, \pm 1, \pm 1/2, \pm \sqrt{2}/2, \pm \sqrt{3}/2$). Как быть в иных случаях?

10.
$$\cos x = \frac{2}{3}$$
.

Имеем вертикальную пару точек с абсциссой 2/3:

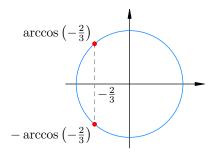


Верхняя точка отвечает углу $\arccos \frac{2}{3}$ (напомним, что значения арккосинуса принадлежат отрезку $[0;\pi]$). Стало быть, решения данного уравнения описываются формулой:

$$x = \pm \arccos \frac{2}{3} + 2\pi n, n \in \mathbb{Z}.$$

11.
$$\cos x = -\frac{2}{3}$$
.

Имеем вертикальную пару точек с абсциссой -2/3:



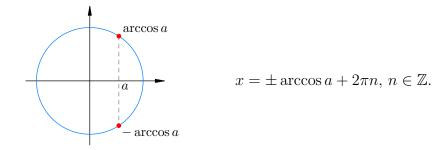
Записываем ответ:

$$x = \pm \arccos\left(-\frac{2}{3}\right) + 2\pi n, \ n \in \mathbb{Z}.$$

Напомним, что арккосинує не является ни чётной, ни нечётной функцией, поэтому знак минує у аргумента арккосинує так и оставляем. При желании можно воспользоваться соотношением: $\operatorname{arccos}\left(-\frac{2}{3}\right) = \pi - \operatorname{arccos}\frac{2}{3}$.

12.
$$\cos x = a$$
.

Теперь ясно, как выглядит решение уравнения в общем случае (разумеется, при $|a| \leqslant 1$).



Данная формула обобщает все случаи, рассмотренные выше.

Уравнение $\sin x = a$

Для рассмотрения уравнения $\sin x = a$ достаточно определения синуса: $\sin x$ — это ордината точки x тригонометрической окружности, которая отвечает углу x.

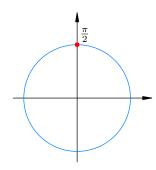
При a>1 или a<-1 уравнение $\sin x=a$ не имеет решений, поскольку синус не может принимать значений, по модулю превосходящих единицу.

Если же $|a| \leq 1$, то уравнение $\sin x = a$ имеет бесконечно много решений (снова вспомните статью «Обратные тригонометрические функции»: прямая y = a пересекает график функции $y = \sin x$ в бесконечном множестве точек).

Мы начинаем с уравнений, в правой части которых стоит табличное значение синуса.

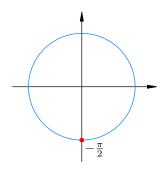
1. $\sin x = 1$.

На тригонометрической окружности имеется единственная точка с ординатой 1:



$$x = \frac{\pi}{2} + 2\pi n, \, n \in \mathbb{Z}.$$

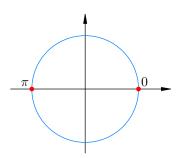
2. $\sin x = -1$.



$$x = -\frac{\pi}{2} + 2\pi n, \ n \in \mathbb{Z}.$$

3. $\sin x = 0$.

На тригонометрической окружности имеются две точки с нулевой ординатой:

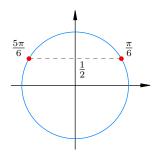


Решения данного уравнения описываются простой формулой:

$$x = \pi n, n \in \mathbb{Z}.$$

4. $\sin x = \frac{1}{2}$.

Возникает горизонтальная пара точек с ординатой 1/2:



6

Правой точке соответствуют углы:

$$x_1 = \frac{\pi}{6} + 2\pi n, \ n \in \mathbb{Z}.$$

Левой точке соответствуют углы:

$$x_2 = \frac{5\pi}{6} + 2\pi n, \ n \in \mathbb{Z}.$$

Обе серии решений x_1 и x_2 можно записать в виде совокупности:

$$x = \frac{\pi}{6} + 2\pi n,$$

$$x = \frac{5\pi}{6} + 2\pi n, n \in \mathbb{Z}.$$

Оказывается, существует одна-единственная формула, объединяющая обе серии. Выглядит она так:

$$x = (-1)^k \frac{\pi}{6} + \pi k, \ k \in \mathbb{Z}.$$

Давайте посмотрим, что получается при чётных k. Если k=2n, то

$$x = (-1)^{2n} \frac{\pi}{6} + \pi \cdot 2n = \frac{\pi}{6} + 2\pi n.$$

Мы получили первую серию решений x_1 . А если k нечётно, k=2n+1, то

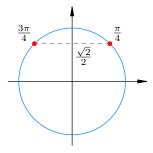
$$x = (-1)^{2n+1} \frac{\pi}{6} + \pi(2n+1) = -\frac{\pi}{6} + 2\pi n + \pi = \frac{5\pi}{6} + 2\pi n.$$

Это вторая серия x_2 .

В качестве множителя при $(-1)^k$ обычно ставится правая точка, в данном случае $\pi/6$.

Нижеследующие уравнения решаются точно так же. Мы приводим рисунок, запись ответа в виде совокупности двух серий и объединяющую формулу.

5.
$$\sin x = \frac{\sqrt{2}}{2}$$
.

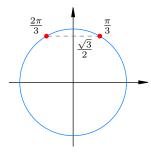


$$x = \frac{\pi}{4} + 2\pi n,$$

$$x = \frac{3\pi}{4} + 2\pi n, \ n \in \mathbb{Z};$$

$$x = (-1)^k \frac{\pi}{4} + \pi k, \ k \in \mathbb{Z}.$$

6.
$$\sin x = \frac{\sqrt{3}}{2}$$
.

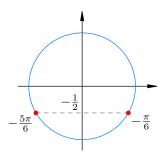


$$x = \frac{\pi}{3} + 2\pi n,$$

$$x = \frac{2\pi}{3} + 2\pi n, n \in \mathbb{Z};$$

$$x = (-1)^k \frac{\pi}{3} + \pi k, \ k \in \mathbb{Z}.$$

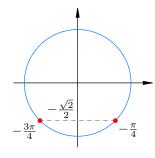
7.
$$\sin x = -\frac{1}{2}$$
.



$$\begin{bmatrix} x = -\frac{\pi}{6} + 2\pi n, \\ x = -\frac{5\pi}{6} + 2\pi n, n \in \mathbb{Z}; \end{bmatrix}$$

$$x = (-1)^{k+1} \frac{\pi}{6} + \pi k, \ k \in \mathbb{Z}.$$

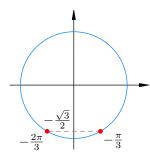
8.
$$\sin x = -\frac{\sqrt{2}}{2}$$
.



$$\begin{bmatrix} x = -\frac{\pi}{4} + 2\pi n, \\ x = -\frac{3\pi}{4} + 2\pi n, n \in \mathbb{Z}; \end{bmatrix}$$

$$x = (-1)^{k+1} \frac{\pi}{4} + \pi k, \ k \in \mathbb{Z}.$$

9.
$$\sin x = -\frac{\sqrt{3}}{2}$$
.



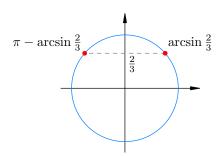
$$\left[\begin{array}{l} x=-\frac{\pi}{3}+2\pi n,\\ x=-\frac{2\pi}{3}+2\pi n,\,n\in\mathbb{Z}; \end{array} \right.$$

$$x = (-1)^{k+1} \frac{\pi}{3} + \pi k, \ k \in \mathbb{Z}.$$

Теперь перейдём к уравнениям с нетабличным значением синуса в правой части.

10.
$$\sin x = \frac{2}{3}$$
.

Имеем горизонтальную пару точек с ординатой 2/3:



Правая точка отвечает углу $\arcsin \frac{2}{3}$ (напомним, что значения арксинуса принадлежат отрезку $\left|-\frac{\pi}{2};\frac{\pi}{2}\right|$). Обратите внимание на выражение для угла, отвечающего левой точке! Записываем решения данного уравнения в виде совокупности:

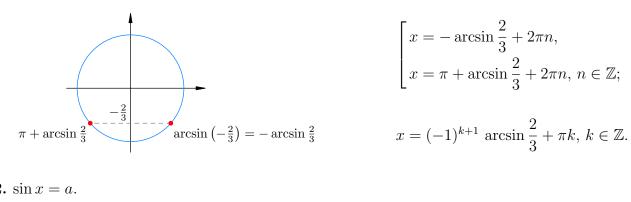
$$\begin{bmatrix} x = \arcsin \frac{2}{3} + 2\pi n, \\ x = \pi - \arcsin \frac{2}{3} + 2\pi n, n \in \mathbb{Z}. \end{bmatrix}$$

Объединяющая формула:

$$x = (-1)^k \arcsin \frac{2}{3} + \pi k, \ k \in \mathbb{Z}.$$

11.
$$\sin x = -\frac{2}{3}$$
.

Смотрите рисунок и формулы. Вам уже не составит труда разобраться в этой ситуации. Мы воспользовались здесь нечётностью аркинуса.

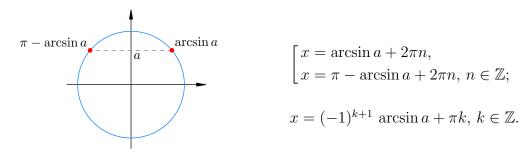


$$\begin{bmatrix} x = -\arcsin\frac{2}{3} + 2\pi n, \\ x = \pi + \arcsin\frac{2}{3} + 2\pi n, n \in \mathbb{Z}; \end{bmatrix}$$

$$x = (-1)^{k+1} \arcsin \frac{2}{3} + \pi k, \ k \in \mathbb{Z}.$$

12. $\sin x = a$.

Теперь нам ясно, как выглядят решения в общем случае (разумеется, при $|a| \leq 1$).



Данные формулы обобщают разобранные выше случаи.

Уравнение tg x = a

Вспомним, что тангенс может принимать любые значения (область значений функции $y = \operatorname{tg} x$ есть всё множество \mathbb{R}). Стало быть, уравнение $\operatorname{tg} x = a$ имеет решения при любом a.

1. tg x = 0.

Будучи записано в виде

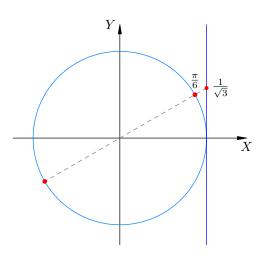
$$\frac{\sin x}{\cos x} = 0,$$

данное уравнение равносильно уравнению $\sin x = 0$. Его решения, как мы знаем, имеют вид:

$$x = \pi n, n \in \mathbb{Z}.$$

2. $tg x = \frac{1}{\sqrt{3}}$.

Здесь нам уже понадобится линия тангенсов. Имеем диаметральную пару:

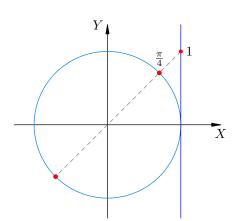


Пишем ответ:

$$x = \frac{\pi}{6} + \pi n, \, n \in \mathbb{Z}.$$

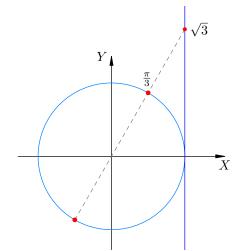
Нижеследующие уравнения решаются аналогично. Мы приводим лишь рисунки и ответы.

3. tg x = 1.



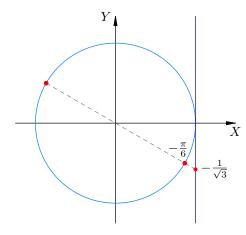
$$x = \frac{\pi}{4} + \pi n, \, n \in \mathbb{Z}.$$

4.
$$tg x = \sqrt{3}$$
.



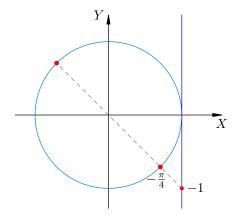
$$x = \frac{\pi}{3} + \pi n, \, n \in \mathbb{Z}.$$

5. $\operatorname{tg} x = -\frac{1}{\sqrt{3}}$.



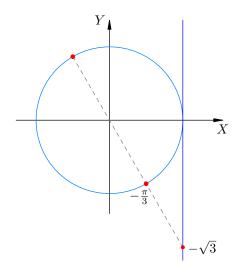
$$x = -\frac{\pi}{6} + \pi n, \ n \in \mathbb{Z}.$$

6. tg x = -1.



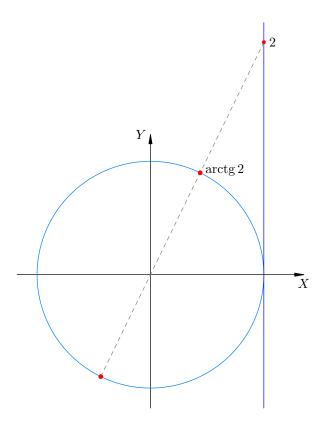
$$x = -\frac{\pi}{4} + \pi n, \, n \in \mathbb{Z}.$$

7. $tg x = -\sqrt{3}$.



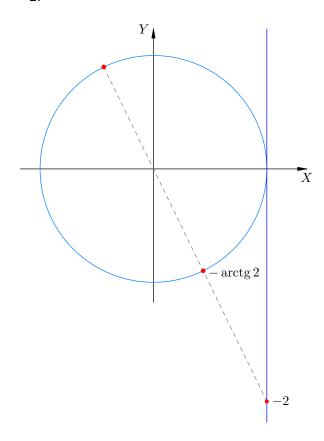
$$x = -\frac{\pi}{3} + \pi n, \ n \in \mathbb{Z}.$$

8. tg x = 2.



 $x = \operatorname{arctg} 2 + \pi n, n \in \mathbb{Z}.$

9. tg x = -2.

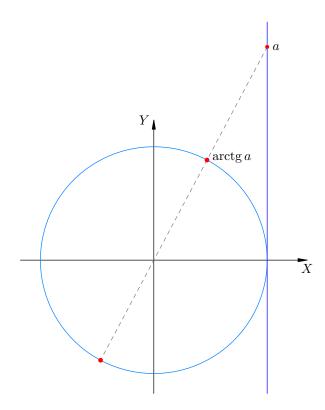


 $x = -\operatorname{arctg} 2 + \pi n, \ n \in \mathbb{Z}.$

Здесь мы воспользовались нечётностью арктангенса: $\operatorname{arctg}(-2) = -\operatorname{arctg} 2$.

Теперь ясно, что мы имеем в общем случае.

10. tg x = a.



 $x = \operatorname{arctg} a + \pi n, n \in \mathbb{Z}.$

Данная формула обобщает случаи, рассмотренные выше.

Уравнение $\operatorname{ctg} x = a$

Уравнение $\operatorname{ctg} x = a$ можно не рассматривать отдельно, поскольку:

- \bullet уравнение $\operatorname{ctg} x = 0$, будучи записано в виде $\cos x/\sin x = 0$, равносильно уравнению $\cos x = 0$ и потому имеет решения $x = \frac{\pi}{2} + \pi n \ (n \in \mathbb{Z});$
- при $a \neq 0$ уравнение $\operatorname{ctg} x = a$ равносильно уравнению $\operatorname{tg} x = \frac{1}{a}$ и потому имеет решения $x = \operatorname{arctg} \frac{1}{a} + \pi n \ (n \in \mathbb{Z}).$

Задачи

Во всех ответах предполагается, что $n \in \mathbb{Z}$.

1. Решите уравнение:

a) $\cos 2x = 1$;

6) $\cos 3x = -1;$

в) $\sin \frac{x}{2} = -1;$ д) $\cos \frac{x}{4} = 0;$

 $\Gamma) \sin \frac{2x}{3} = 1;$

e) $\sin 5x = 0$.

a) πn ; 6) $\frac{\pi}{3} + \frac{2\pi n}{3}$; b) $-\pi + 4\pi n$; t) $\frac{3\pi}{4} + 3\pi n$; π) $2\pi + 4\pi n$; e) $\frac{\pi n}{5}$

2. Решите уравнение:

a)
$$\cos\left(x - \frac{\pi}{3}\right) = 1;$$

$$6) \cos\left(x + \frac{\pi}{4}\right) = -1;$$

$$\mathrm{B)} \sin\left(x + \frac{\pi}{6}\right) = 1;$$

$$r) \sin\left(x - \frac{3\pi}{4}\right) = -1;$$

д)
$$\sin\left(2x + \frac{\pi}{5}\right) = 0;$$

e)
$$\cos\left(\frac{x}{2} - \frac{\pi}{12}\right) = 0.$$

$$n\pi + 2\pi n; 6) \frac{\pi}{6} + 2\pi n; 9) \frac{\pi}{6} + 2\pi n; 1) \frac{\pi}{6} + 2\pi n;$$

3. Решите уравнение:

a)
$$\operatorname{tg}\left(x - \frac{\pi}{4}\right) = 1;$$

6)
$$\operatorname{ctg}\left(x + \frac{\pi}{4}\right) = 1;$$

B)
$$tg 2x = -1;$$

r)
$$\cot \frac{x}{2} = -1;$$

д)
$$\operatorname{tg}\left(3x + \frac{\pi}{6}\right) = 0;$$

e)
$$\operatorname{ctg}\left(\frac{x}{3} - \frac{\pi}{9}\right) = 0.$$

$$\boxed{ a\pi\xi + \frac{\pi n}{3} \ (9 \ ; n\pi + \frac{\pi}{81} - (\mu \ ; n\pi 2 + \pi - (1 \ ; \frac{n\pi}{2} + \frac{\pi}{8}) - (\pi \ ; n\pi \ (3 \ ; n\pi + \frac{\pi}{2})) }$$

4. Найдите решения уравнения $\cos x = \frac{1}{2}$, удовлетворяющие условию $\sin x > 0$.

$$n\pi \Omega + \frac{\pi}{\varepsilon}$$

5. Найдите решения уравнения $\cos x = \frac{\sqrt{2}}{2}$, удовлетворяющие условию $\sin x < 0$.

$$u\pi \Omega + \frac{\pi}{4}$$

6. Найдите решения уравнения $\cos x = \frac{\sqrt{3}}{2}$, удовлетворяющие условию $\sin x > 0$.

$$u\pi 2 + \frac{3}{\pi}$$

7. Найдите решения уравнения $\cos x = -\frac{1}{2}$, удовлетворяющие условию $\sin x < 0$.

$$uuz + \frac{\varepsilon}{\varepsilon} -$$

8. Найдите решения уравнения $\cos x = -\frac{\sqrt{2}}{2}$, удовлетворяющие условию $\sin x > 0$.

$$u\pi \Omega + \frac{\pi E}{4}$$

9. Найдите решения уравнения $\cos x = -\frac{\sqrt{3}}{2}$, удовлетворяющие условию $\sin x < 0$.

$$uuz + \frac{9}{u} -$$

10. Найдите решения уравнения $\sin x = \frac{1}{2}$, удовлетворяющие условию $\cos x > 0$.

$$n\pi\Omega + \frac{\pi}{8}$$

11. Найдите решения уравнения $\sin x = \frac{\sqrt{2}}{2}$, удовлетворяющие условию $\cos x < 0$.

 $u\pi 2 + \frac{\pi \varepsilon}{4}$

12. Найдите решения уравнения $\sin x = \frac{\sqrt{3}}{2}$, удовлетворяющие условию $\cos x > 0$.

 $u\pi 2 + \frac{\pi}{8}$

13. Найдите решения уравнения $\sin x = -\frac{1}{2}$, удовлетворяющие условию $\cos x < 0$.

 $uuz + \frac{uz}{9} -$

14. Найдите решения уравнения $\sin x = -\frac{\sqrt{2}}{2}$, удовлетворяющие условию $\cos x > 0$.

 $u \pi \Omega + \frac{\pi}{4} -$

15. Найдите решения уравнения $\sin x = -\frac{\sqrt{3}}{2}$, удовлетворяющие условию $\cos x < 0$.

 $u\pi 2 + \frac{\pi 2}{8}$

16. Найдите решения уравнения $\operatorname{tg} x = \frac{1}{\sqrt{3}}$, удовлетворяющие условию $\sin x > 0$.

 $u \pi 2 + \frac{9}{\pi}$

17. Найдите решения уравнения $tg x = \sqrt{3}$, удовлетворяющие условию $\cos x < 0$.

 $u\pi 2 + \frac{\pi 2}{8}$

18. Найдите решения уравнения $\operatorname{tg} x = -\frac{1}{\sqrt{3}}$, удовлетворяющие условию $\sin x > 0$.

 $u\pi 2 + \frac{\pi 6}{9}$

19. Найдите решения уравнения $\operatorname{tg} x = -\sqrt{3}$, удовлетворяющие условию $\cos x < 0$.

 $u\pi 2 + \frac{\pi 2}{8}$

20. Найдите решения уравнения $\operatorname{tg} x = \frac{1}{\sqrt{3}}$, удовлетворяющие условию $\sin x > 0$.

 $uu_7 + \frac{9}{4}$

21. а) Решите уравнение:

$$\operatorname{tg}\left(x + \frac{\pi}{4}\right) = \sqrt{3}.$$

б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[\frac{\pi}{2}; \frac{3\pi}{2}\right]$. $\frac{\overline{\epsilon_1}}{\frac{\pi}{u_{E1}}} (9 \cdot u_{\underline{u}} + \frac{\overline{\epsilon_1}}{u_{\underline{u}}} (v_{\underline{u}}) + \frac{\overline{\epsilon_1}}{u_{\underline{u}}} (v_{\underline{u}})$

22. а) Решите уравнение:

$$\sin\left(x - \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}.$$

б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[2\pi; \frac{7\pi}{2}\right]$. $\left[u_{\xi} \cdot \frac{\zeta}{\underline{u_{\xi}}} \right] \underbrace{\left[9 \cdot u_{\xi} + u \cdot u_{\xi} + \frac{\zeta}{\underline{u}} \right]}_{(\xi)}$

$$\pi \xi , \frac{\pi}{2}$$
 (3; $n\pi 2 + \pi , n\pi 2 + \frac{\pi}{2}$ (6)

23. а) Решите уравнение:

$$\sin 5x \cos 3x - \cos 5x \sin 3x = 0.$$

- $\sin 5x \cos 5x \cos$
- 24. а) Решите уравнение:

$$\cos 6x \cos 4x + \sin 6x \sin 4x = -1.$$

б) Найдите все корни этого уравнения, принадлежащие промежутку $[3\pi; 4\pi]$.

$$s) \frac{\pi}{2} (0 : n\pi + \frac{\pi}{2} (s))$$

25. a) Решите уравнение:

$$2\cos\left(\frac{\pi}{3} - x\right) - 1 = 0.$$

б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[\frac{3\pi}{2}; 3\pi\right]$. $\left[\frac{\varepsilon}{2}; 3\pi\right]$ (9) $\left[\frac{\varepsilon}{2}; 3\pi\right]$ (9) $\left[\frac{\varepsilon}{2}; 3\pi\right]$ (9) $\left[\frac{\varepsilon}{2}; 3\pi\right]$ (10) $\left[\frac{\varepsilon}{2}; 3\pi\right]$ (11) $\left[\frac{\varepsilon}{2}; 3\pi\right]$ (12) $\left[\frac{\varepsilon}{2}; 3\pi\right]$ (13) $\left[\frac{\varepsilon}{2}; 3\pi\right]$ (13) $\left[\frac{\varepsilon}{2}; 3\pi\right]$ (14) $\left[\frac{\varepsilon}{2}; 3\pi\right]$ (15) $\left[\frac{\varepsilon}{2}; 3\pi\right]$ (15) $\left[\frac{\varepsilon}{2}; 3\pi\right]$ (16) $\left[\frac{\varepsilon}{2}; 3\pi\right]$ (17) $\left[\frac{\varepsilon}{2}; 3\pi\right]$ (17) $\left[\frac{\varepsilon}{2}; 3\pi\right]$ (18) $\left[\frac{\varepsilon}{2$

$$\frac{8\pi}{8} \cdot \pi \cdot 2 \cdot (0 : n\pi \cdot 2 + \frac{2\pi}{8} \cdot n\pi \cdot 2 \cdot (8))$$

26. а) Решите уравнение:

$$2\sin\left(\frac{\pi}{6} - x\right) - \sqrt{3} = 0.$$

б) Найдите все корни этого уравнения, принадлежащие промежутку $[\pi; 2\pi]$.

$$\frac{\pi}{6}$$
, $\frac{\pi}{5}$ (6; $n\pi 2 + \frac{\pi}{5}$, $n\pi 2 + \frac{\pi}{6}$ (6)

27. а) Решите уравнение:

$$\sin\left(\frac{\pi}{2} - x\right) = -\frac{\sqrt{3}}{2}.$$

б) Найдите все корни этого уравнения, принадлежащие промежутку $[-2\pi; -\pi]$. $\frac{9}{\frac{9}{\mu_2} - (9)} \underbrace{:u\nu_\zeta + \frac{9}{\mu_2} \mp (e)}$

$$a = \frac{\pi 7}{6} - (6 : n\pi 2 + \frac{\pi 8}{6} \pm (6)$$

28. а) Решите уравнение:

$$\cos\left(\frac{3\pi}{2} + x\right) = \frac{\sqrt{3}}{2}.$$

б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[-\frac{5\pi}{2}; -\pi\right]$. $\frac{\mathbb{E}}{\mathbb{E}_{\overline{\nu}}} - \frac{\mathbb{E}}{\mathbb{E}^2} - (9:u\nu\zeta + \frac{\mathbb{E}}{u\zeta}:u\nu\zeta + \frac{\mathbb{E}}{u}:u\nu\zeta + \frac{\mathbb{$

$$\boxed{s} \frac{\pi b}{5} - \frac{h}{5} - \frac{h}{5} - \frac{h}{5} - \frac{h}{5} - \frac{h}{5} + \frac{h}{5}$$

29. а) Решите уравнение:

$$\sin x \cos x = \frac{1}{2}.$$

б) Найдите все корни этого уравнения, принадлежащие промежутку $[-3\pi; -2\pi]$.

$$\theta = \frac{\pi I I}{4} - (6 ; n\pi + \frac{\pi}{4})$$

30. а) Решите уравнение:

$$\cos^2 x - \sin^2 x = -\frac{1}{2}.$$

- б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[\frac{\pi}{2}; 2\pi\right]$. $\left[\frac{\varepsilon}{\frac{\iota}{2}}, \frac{\cdot \varepsilon}{\frac{\iota}{2}}, \frac{\cdot \varepsilon}{\frac{\iota}{2}}, \frac{\varepsilon}{\frac{\iota}{2}}, \frac{\varepsilon}{\frac{\iota}{2}}, \frac{\varepsilon}{\frac{\iota}{2}}\right]$
- 31. Решите уравнение:

a)
$$|\sin x| = \frac{1}{2};$$

6)
$$|\cos x| = \frac{\sqrt{2}}{2}$$
.

$$\frac{n\pi}{2} + \frac{\pi}{4} (0 : n\pi + \frac{\pi}{6} \pm (6 :$$

32. Решите уравнение:

a)
$$\sin x \cdot \sqrt{\cos x} = 0$$
;

$$6) \cos x \cdot \sqrt{-\sin x} = 0;$$

$$B) \sin \frac{3x}{2} \cdot \sqrt{\operatorname{tg} x} = 0;$$

$$\Gamma) \cos 3x \cdot \sqrt{-\operatorname{tg} x} = 0.$$

$$n\pi + \frac{\pi}{2} + n\pi$$
 (1 ; $n\pi + \frac{\pi}{2} + 2\pi n$; B) $n\pi + \frac{4\pi}{3} + 2\pi n$; T) $n\pi + \frac{\pi}{2} + n\pi$ (8) $n\pi + \frac{\pi}{2} + n\pi$ (9) $n\pi + \frac{\pi}{2} + n\pi$ (9) $n\pi + \frac{\pi}{2} + n\pi$ (1) $n\pi + \frac{\pi}{2} + n\pi$ (2) $n\pi + \frac{\pi}{2} + n\pi$ (1) $n\pi + \frac{\pi}{2} + n\pi$ (2) $n\pi + \frac{\pi}{2} + n\pi$ (2) $n\pi + \frac{\pi}{2} + n\pi$ (3) $n\pi + \frac{\pi}{2} + n\pi$ (4) $n\pi + \frac{\pi}{2} + n\pi$ (7) $n\pi + \frac{\pi}{2} + n\pi$ (8) $n\pi + \frac{\pi}{2} + n\pi$ (9) $n\pi + \frac{\pi}{2} + n\pi$ (1) $n\pi + n\pi$ (1) $n\pi$ (1) $n\pi + n\pi$ (1) $n\pi$ (1)

33. Решите уравнение:

a)
$$\sin x \sin 2x = 0$$

$$6) \cos x \cos 3x = 0;$$

B)
$$(\operatorname{tg} x - 1) \cos 2x = 0$$
;

$$\Gamma) \cos x \operatorname{tg} 2x = 0.$$

8)
$$\frac{\pi n}{2}$$
; 6) $\frac{\pi}{6} + \frac{\pi n}{3}$; B) $\frac{\pi}{4} + \frac{\pi n}{2}$; T) $\frac{\pi n}{2}$

34. Решите уравнение:

a)
$$\sin x \cdot \sqrt{16 - x^2} = 0;$$

$$6) \cos x \cdot \sqrt{6x - x^2 - 5} = 0.$$

s)
$$0, \pm \pi, \pm 4; 6$$
 1, $5, \frac{\pi}{2}, \frac{3\pi}{2}$

35. (*МГУ*, ДВИ, 2011) Решите уравнение:

$$(\sin x - \cos x)^2 = 2.$$

 $uu + \frac{t}{u} -$

36. (*МГУ, химический ф-т, 2008*) Решите уравнение

$$\frac{\cos 2x}{1 - \sqrt{2}\sin x} = 0.$$

 $n\pi + \frac{\pi}{4}I + n(I -)$

37. (*МГУ*, *МШЭ*, *2006*) Решите уравнение

$$\frac{\sin 3x}{1 + 2\cos 2x} = 0.$$

uu